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High gradient (and hopefully lower cost) transformational

accelerator technology is being developed

M. Tigner: Does Accelerator based Particle Physics
have a Future? Physics Today 2001
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Laser-driven
plasma-wave
electron accelerators

Wim Leemans and Eric Esarey

Figure 6. A 2-TeV electron-positron collider based on laser-
driven plasma acceleration might be less than 1 km long. Its
electron arm could be a string of 100 acceleration modules,
, each with its own laser. A 30-J laser pulse drives a plasma
‘ wave in each module’s 1-m-long capillary channel of pre-

formed plasma. Bunched electrons from the previous module
gain 10 GeV by riding the wave through the channel. The
chain begins with a bunch of electrons trapped
from a gas jet just inside the first module’s
plasma channel. The collider’s

ley ]
T -0g;, positron arm begins the same
B E L L A L"Se'r O\TG 1% o “on, way, but the 10-GeV elec-
l trons emerging from its first
J Sep - module bombard a metal

target to create positrons,
which are then focused and
injected into the arm’s string
of modules and accelerated
just like the electrons.

Positron production target

March 2009 Physics Today
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Laser plasma acceleration (LPA) relies on laser
excited fields in plasmas
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Limits to energy gain in laser-plasma accelerator (LPA):
diffraction, dephasing, depletion

Limits to single stage energy gain: mec? A’y ~ q(mcwp / 6) Lit
= Laser Diffraction: ~ Rayleigh range (typically most severe)
» Controlled by transverse plasma density tailoring (plasma channel) and/or relativistic self-

guiding and ponderomotive self-channeling

= Beam-Wave Dephasing: Slippage between e-beam and plasma wave
» Controlled by longitudinal plasma density tailoring (plasma tapering)

= Laser Energy Depletion: Rate of laser energy deposition of into plasma wave

Ldeplete X n_3/2 A_z



Channel guided laser plasma accelerators have produced up

to GeV beams from cm-scale structures powered by up to 40 TW pulses

2004 result: 10 TW laser, mm-scale plasma
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C. G. R. Geddes,et al, Nature, 431, p538 (20)
S. Mangles et al., Nature 431, p535 (2004)
2006 result: 40 TW laser, cm-scale plasma J. Faure et al., Nature 431, p541 (2004)
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« Staging of two independently powered LPAs

* Experiments with BELLA

« Towards high average power operations



Staged LPAs: average gradient determined by driver

In-coupling distance

> LPA stage: lsser —> » Number of stages:
Nstage — Ubeam/AUsta,ge XN

coupling
distance

» Laser in-coupling distance
(provides for high-average gradient)

:

Length |TeV staged-LPA linac

® conventional optics: requires

many Rayleigh ranges reduce fluence
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Staging experiment aims at demonstrating key

element of collider concept and requires precision

= Advantages: = Challenges:
— Staged LPA can supply fresh laser pulses - Laser spatial overlap ~um
— Separate injection and acceleration - Temporal overlap ~ fs

— Two capillary + plasma mirror operation

Plasma mirror
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* Non-linear regime
Trapping electrons

2" stage

Linear regime
Acceleration

W. P. Leemans and E. Esarey, Physics Today (2009).



The staging setup was initially designed in 2010-2011

Laser diagnostics
* Mode imager
* Optical spectrometer

Beam
splitter

TREX laser @ LOASIS
Ti:Sapphire laser (A = 805 nm)
% Peak power 40TW

% Optimum compression 40 fs
** Rep. rate 1-10 Hz

TREX pulses




* Experiments with BELLA



Petawatt class lasers becoming available with a ten fold
expansion planned by 2017-2018 (mainly outside of USA)

r
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- Total peak power of all CPA systems operating today is ~11.5 PW
- By 2018 planned CPA projects will bring total to ~ 127 PW

- Estimates do not include present MJ or planned Exawatt scale projects

Courtesy: C. Barty, LLNL 12



The BELLA facility houses a state-of-the-art PW-laser for laser plasma

accelerator science
Control Room

Gowning Room

BELLA Laser
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All major mechanical and electrical systems were installed and
commissioned in 2012-2013

Beam [ransport Line
(Caser. Bay)
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e-Beam diagnostics include energy, transverse
profile and charge transformers

v r 4

Single shot

30 MeV-11 GeV
Two ICTs
Phosphor screen

Phosphor screen
calibrated cameras



BELLA laser operates at ~ 1 PW, 1 Hz allowing high
intensity laser plasma acceleration experiments
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First commercial Petawatt laser operating at > 42 J in <40 fs
Energy stability <0.3 % rms fluctuation

Pointing stability < 1.2 micro-rad

Long focal length mirror: ~55 micron spots on target
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Experiments at LBNL use the BELLA laser focused by a 14 m focal length

off-axis paraboloid onto gas jet or capillary discharge targets

BELLA laser \
Magnetic spectrometer J

Calorimeter Wedge with hole ICT
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Optimization of focal quality with deformable mirror is done at all

power levels to mitigate thermal lensing in amplifiers
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Pulse shapes are modeled and measured as input for simulations
Reaching 30 fs requires better 34 and 4" order compensation

48.195 deg 47.99 deg 47.7 deg
Pre-pulse Symmetric pulse Post-pulse
19 TW/J 21 TW/J 17 TW/J

modeledintensitytrace at target modeledintensitytrace ak target modeledintensitytrace at target

Grenouille-based Grenouille-based
model model

Wizzler
meas.

D T T
0.0 50.0 100.0
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Longitudinal laser group velocity measurement yields

iInformation on density

Theory: C. Schroeder et al., Phys. Plasmas 18 (2011)
Experiment: J. van Tilborg et al. Phys. Rev. E (2014) 200
Experiment: J. Daniels et al. (in preparation 2014)

400

“WWHH' it

Spectromete .

Plxel

600

800

Capillary 1000
2 @ 780 790 800 810 820 830 840
Wavelength [nm]

Delay stage
15 T
§2)
200 2 With channel
» 1o} |
= 4o o
° 5 Vacuum
x i
o 600 _CE) 5F
> >
800 zZ
-50 -40 —30 —10 10

1000 Two-pulse separat|on At [fs]
0 500 1000 1500 2000

Time [fs]

21



GVD experiment shows that density scales linear with fill

pressure and is very repeatable day-to-day

Neutral H, density in capillary (10** m~)
00 02 04 06 08 10 12 14

1.1 — 1t r 1 r 1+ T T T T T 1

0.7

o
o))
T

0.5

04

® Day1
A Day2
v Day3 _
B ¢ Day4 -
0.1 F ——— Linear fit| -

03
0.2

On-axis electron density

0'0 I L 1 1 1 1 1 i 1 L 1 i 1 1 L i 1 1
0 5 10 15 20 25 30 35 40 45

Neutral H, pressure in capillary (Torr)

At 40 Torr: (assuming full ionization) 2.56x10'® cm-3 average electron density



Vacuum mode looks Gaussian at focus but is near flat-top at 10 meter
Low power mode well guided by capillary and looks nearly Gaussian

] BELLA laser \
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Simulation shows top hat beam gives increased fluence at capillary
wall compared to Gaussian , higher density compensates

(c) Top hat, n.="7x10'" cm™

Fluence (F/F,)

Radial position (um)

(d) Top hat, n.=7x10'7 cm,
no preformed channel

Radial position (wm)

Propagation distance (cm) Propagation distance (cm)



Under the wrong operating conditions severe damage can
be done to the capillary walls

« Measurement of plasma density profile is key for guiding the experiments

« Centroid based technique for profile shape
« A.J. Gonsalves et al., PoP 2010

« Group velocity delay measuremement
« J.van Tilborg et al., PRE 2014

* In-situ measurement based on spectral redshifting of laser beam



Experiment shows similar laser red-shifting as simulation

Comparison used to cross-calibrate density

Simulation Experiment
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* Previous experiments on redshift in excellent agreement with simulation*
 Energy ~7.5J, Pulse length ~40fs, wy~33 um, L, = 9cm
« Large redshifting indicates deep depletion

« Detector response applied to simulated spectra
W.P. Leemans et al., submitted * S. Shiraishi et al., PoP 2013



4.25 GeV beams have been obtained from 9 cm plasma channel

powered by 310 TW laser pulses (15 J)

*C. Benedetti et al., proceedings of AAC2010, proceedings of ICAP2012

30

Electron beam spectrum

nCISRI{MeVYic)

1 > 3 4 5
Beam energy [GeV]

INF&RNO simulation™

h

42100 GeV ©

e Laser (E=15)):

. . . Ener 4.25 GeV 4.5 GeV
— Measured) longitudinal profile (T = 40 fs) 2/
- Measured far field mode (w,=53 pm) AE/E 6% 3.2%
e Plasma: parabolic plasma channel (length 9 cm, Charge ~6 pC 23 pC
~ 17 -3
n,~6x10*" cm=) Divergence 0.3 mrad 0.3 mrad

W.P. Leemans et al.,submitted
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Parametric studies indicate strong sensitivity to

narameters

Experiments

- E-Beams >3 GeV observed in range of 0.5-1x10'® ¢cm-3
- Charge up to 180 pC for the higher densities

- Fluctuation at the 1 GeV level
- Angular changes (+/- 1 mrad) -> 0.5 GeV inaccuracy
- Density fluctuations from group velocity dispersion: +/- 0.15x10"7 cm-3
- Laser fluctuations a, ~ +/- 0.08

Simulations

Density Er, |ag Near-field profile |Energy Charge (pC)
(1017 ecm—3) [ (J) (GeV)

6.5 16 1.66 Top-hat 3.9 15

7.0 16 |1.66 Top-hat 4.3 50

7.0 15 1.61 Top-hat 3.7 35




lectron trapping and acceleration is complex in this regime

Peak normalized laser field strengt

Simulations based on measured input parameters

potential
beam loss n( z) /TLO

0 1 2 3 4 5 6 7 8 9

Propagation distance, z (cm)



New experiments also confirm energy gain scales with 1/n

10 GeV requires further lowering of density

S go00f n \ oRAL 2009 ;
Next step s LLNL 20108, :
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10 GeV-class quasi-monoenergetic beams

can be obtained in ~ 10 cm capillary in non-linear regime

. longitudinal phase space @ z = 10 cm N electron plasma density
10} \
8|
6|
2, Q 200 pC
uJ avera ~ 9 Gev
4| (dE/é)rms ~T7 %
(0,)ms ~ 1 M
) | (6, ™~ 2 HM
- ’ (04 )pms ~ 0.45 mrad
14 42 -10 -8 6 4 -2 0
k (z-ct
kp(z-c‘r) P( )
Initial a0~3.5-4.0 Laser heater required to deepen channel

ity ~ 17 -3
Plasma denSIty 3x 107" em N.A. Bobrova et al., Physics of Plasmas 20, 020703 (2013)
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INF&RNO simulation of a 10 GeV-class stage

in the quasi-linear regime: injector + accelerator

T.eor® 100 fs, a,=1.7, plasma channel n,~2x10'” e/cm3 ==> requires triggered injection’

laser

injector (negative density gradient)

electron density (after gas-jet)

8 injector (gas-jet)
6_ loser
>
y
2 ocallzed
S 4} injection
. to the
§ A plasma
= do n Q
- channel 3o
Q.
v
0 e), 00
-20 - - -5 ) _ccs
Q.
. S
— injection phase can be accurately controlled S E,
Thl"OUQh np and l'down L =S 5 3 b
k (z-ct)

* Gonsalves et al., Nature Phys. (2011)



Tunable electron beams can be produced with

jet + capillary module using laser focus control

nature Charge density
LETTERS h SiCS (nC MeV-1sr™)
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. . . . L : ‘ ‘ = 0
longitudinal density tailoring rym———
A. ). Gonsalves', K. Nakamura', C. Lin'2, D. Panasenko'?, S. Shiraishi'3, T. Sokollik'4, C. Benedetti', Ax=0.65mm 0.02
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Low energy spread beams produced in 40 cm

acceleration length

Normalized laser intensity

5 .
Electron density
4(
good guiding of the laser
3l for several tens of cm —
xﬂ-
XX
T e laser diffracts
0 without channel
10 20 30 i
z[cm]
i~ Electron beam energy
8l
~ Q~10pC
§ ° i EGVCT‘G e ~ 9 Gev
: (dE/E),, .~ 6 %
LU84 i (oz)r'ms ~1um
(0 ~ 0.25 i
2| (0,)pms ~ 0.15 mrad
° 020 30 40 50 kp*(z-ct)
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 Towards high average power operations



Many applications need higher average power
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For k-BELLA, revolutionary new laser technology will be required and

a path is emerging
State-of-the-art: Upgrade path: Goal:

Yb fiber

)

50kW, 30% eff., CW

-

Yb fiber

100kHz, 45fs, 1m)



Achieving high average power with ultrafast lasers will most

likely rely on some form of beam combining or pulse stacking

- Just increase power to existing laser technology?
— It would break, wrong technology
« 10kW, 30% efficient fiber lasers exist, but CW
— Ultrafast lasers peak power limited to ~1mJ
» Solution: coherent combining
— Space: 10,000 lasers?
— Time: 100 pulses from one laser

0000000
0000000
0000000
0000000
0000000
0000000
0000000
0000000

00000000
« Novel methods combine (“stacks”) pulses in time
A high energy system would do both

F=2Q, U.S. DEPARTMENT OF _ | (yffica of

{7} ENERGY | sciorcs High Energy Physics



A new concept has emerged that could

radically change requirements on lasers

» Plasma wave excitation by incoherent laser pulses: path to high-

average and high-peak power lasers for LPA
® Benedetti et al., Phys. Plasmas (2014)

208 laser beamlets
(random phases)

Cowrgy denaily o Ez wakefield (s=1.8 mm) 5 on-axis lineout of Ez (s=1.8 mm)
L)

“ coherent pulse, A =0.8

- incoherent combination,
L (208 beamlets, a =1.5)

x [um]
EZ(C)/EO
e}
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z- Jun)
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« Same integrated momentum gain for coherent pulse and incoherent
combination
o Will have significant impact in thinking about future high average power lasers 39
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Summary

- Petawatt class lasers are enabling multi-GeV laser plasma accelerators
« Experiments with gas jet, gas cell and capillary discharges
— Capillary discharge LPA reached 4.2 GeV ebeams using ~15 J in ~40 fs pulses
— Laser guiding is key to achieving the highest energy with the lowest laser power
- Laser mode has important impact on performance
- Operation at lower density and mode matching can be challenging
* Next phase experiments:
- Decouple injection and acceleration

- Towards 10 GeV: longer structures at lower density, including channel depth
control with laser heater

 Concepts for high average power lasers are being developed
- Incoherent combining may relax requirements

* Plans for a high average power laser demonstrator (3 J at 1 kHz) being developed
- k-BELLA: 1 GeV at 1 kHz

40
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